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Hardness of Evolutionarily Stable 

Strategies



Overview
- The Tools

- Game Theory – what the smart thing to do?

- Complexity – is chess harder then sudoku?

- Reductions

- The Method

- From Graph to Strategy

- Claims and Proofs



Game Theory
- mathematics of strategic interaction



Payoff Matrix – The Prisoner's Dilemma
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Nash Equilibrium

Symmetric Nash Equilibrium: “Best response to itself”
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Rock-Paper-Scissors

Rock Paper Scissors

Rock 0/0 1/-1 -1/1

Paper -1/1 0/0 1/-1

Scissors 1/-1 -1/1 0/0



Rock-Paper-Scissors

Solution? Mixed Strategies!

Rock Paper Scissors

Rock 0/0 1/-1 -1/1

Paper -1/1 0/0 1/-1

Scissors 1/-1 -1/1 0/0



Mixed Strategy
Pick each option with a certain probability

- Rock 50%, Scissors 25%, Paper 25%

- Rock 33%, Scissors 33%, Paper 33%
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Mixed Strategy
Pick each option with a certain probability

- Rock 50%, Scissors 25%, Paper 25%

- Rock 33%, Scissors 33%, Paper 33%

Is there now a Nash Equilibrium?

- Yes! Picking everything 33% → best response to itself!
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Evolutionary Stable Strategy
If yellow is worse against green...
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Evolutionary Stable Strategy
If yellow is as good against green… and is as good against itself!



Evolutionary Stable Strategy
If yellow is as good against green… and is as good against itself!



Evolutionary Stable Strategy
- Nash Equilibrium: Strategy x is the best response to itself.

- + extra condition: For every Strategy y, such that y is an equally good response to 

x, it holds that y is a strictly worse response to itself, than x is to y.



Rock-Paper-Scissors, evolutionary stable?

Rock Paper Scissors

Rock 0/0 1/-1 -1/1

Paper -1/1 0/0 1/-1

Scissors 1/-1 -1/1 0/0



Complexity
- Measure for how “hard” a problem is to solve

- How many steps does it take to complete a task, in relation to the input size?

- As the input size grows, how much longer does it take to solve a problem?



Complexity Classes
- Polynomial: Sorting a List

- Exponential time: Chess



NP-Problems and co-NP-Problems
- NP: hard to find a solution, easy to check if the solution is correct

- Sudoku, Super Mario Bros, etc

- co-NP: similar but opposite of NP-problems

- In NP-Problems, yes-instances are easy to check, in co-NP-Problems no-instances 

are easy to check



Reduction
- “quick” transformation of a problem A into another problem B, so that we can use 

a solution to problem B, to solve Problem A

A BReduction

Solution



Reduction, Example
Q: Is this graph three-colorable?



Reduction, Example
Q: Is this graph three-colorable?

Idk, but I would know how to 

solve for four-colorability....



Reduction, Example
Q: Is this graph three-colorable?



What does this tell us about complexity?
- If there is a reduction from problem A to problem B, A is at most as hard as B.

- → B is as least as hard as A



NP-Hardness and co-NP-Hardness
- A problem H is NP-hard when for every problem L in NP, there is a 

polynomial-time reduction from L to H.

- Informally: “Hardest Problems in NP”

- A problem H is co-NP-hard when for every problem L in co-NP, there is a 

polynomial-time reduction from L to H



The Paper, finally, what is it about?
- Given Graph G, Integer k

→ Payoff Matrix u

- u has ESS iff G has max clique size not exactly k

- finding max clique size is NP-hard and co-NP-hard

→ finding an ESS is NP-hard and co-NP-hard



Cliques



Cliques



Notation
- u: payoff matrix

- u(i, j): payoff for option i when facing option j

- x, y: Strategies, probability distributions on options

- u(x, y) = Σ
i

 Σ
j

 x

i

*y

j

*u(i, j): expected payoff of strategy x when facing y

- Symmetric Nash equilibrium: for every y, u(x, x) ≥ u(y, x)

- 2. Condition: for every y ≠ x such that u(y, x) = u(x, x), we have that                   

u(y, y) < u(x, y)

u(i,j)

i

j

0.1

0.5

0.4



The Reduction
Given: Graph G & Integer k, 1 < k < (number of vertices)
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Rule 1
for i, j > 0, i ≠ j, u(i, j) = 1, if there is an edge between vertices i & j, else 0



The Reduction
Given: Graph G & Integer k, 1 < k < (number of vertices), e.g. k = 2
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1 0 1 0 0 0

1 1 0 1 0 0

0 1 0 0 1 0

1 0 0 0 0 1

0 1 0 0 1 1

0 0 1 0 1 1

0 0 0 1 1 1



Rule 2
for i > 0, u(i, i) = 0.5



The Reduction
Given: Graph G & Integer k, 1 < k < (number of vertices), e.g. k = 2
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.5 1 0 1 0 0 0

1 .5 1 0 1 0 0

0 1 .5 0 0 1 0

1 0 0 .5 0 0 1

0 1 0 0 .5 1 1

0 0 1 0 1 .5 1

0 0 0 1 1 1 .5



Rule 3
u(i, 0) = u(0, i) = a = 1 - 1/(2k)



The Reduction
Given: Graph G & Integer k, 1 < k < (number of vertices), e.g. k = 2, a = 1 - 1/(2k) = 0.75

5

3

6

7

1 2

4

a a a a a a a a

a .5 1 0 1 0 0 0

a 1 .5 1 0 1 0 0

a 0 1 .5 0 0 1 0

a 1 0 0 .5 0 0 1

a 0 1 0 0 .5 1 1

a 0 0 1 0 1 .5 1

a 0 0 0 1 1 1 .5



What are we trying to show?
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a a a a a a a a

a .5 1 0 1 0 0 0

a 1 .5 1 0 1 0 0
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What are we trying to show?
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a a a a a a a a

a .5 1 0 1 0 0 0

a 1 .5 1 0 1 0 0

a 0 1 .5 0 0 1 0

a 1 0 0 .5 0 0 1

a 0 1 0 0 .5 1 1

a 0 0 1 0 1 .5 1

a 0 0 0 1 1 1 .5

Has an evolutionary stable 

strategy...

... if in here the max clique 
size is not exactly k!



Lemma
Lemma: For every x, with x

0

 = 0, u(x, x) ≤ 1 - 1/(2k’), where k’ is the size of the 

maximum clique in G. Equality is achieved iff x is uniform over a k’-clique. 
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   = 0.3 + 0.4 = 0.7

q = sum of all x
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Lemma
Lemma: For every x, with x

0

 = 0, u(x, x) ≤ 1 - 1/(2k’), where k’ is the size of the 

maximum clique in G. Equality is achieved iff x is uniform over a k’-clique. 

x = (0, 0.2, 0.3, 0.4, 0.1),    x’ = (0, 0.3, 0.3, 0.4, 0)



Lemma
Lemma: For every x, with x

0

 = 0, u(x, x) ≤ 1 - 1/(2k’), where k’ is the size of the 

maximum clique in G. Equality is achieved iff x is uniform over a k’-clique. 

x = (0, 0.2, 0.3, 0.4, 0.1),    x’ = (0, 0.3, 0.3, 0.4, 0)

u(x’, x’) = u(x, x) + x

4

(p - q) + x
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The Claims
Claim 1: If C is a maximal clique of G of size k’ > k, and x is the uniform distribution 

on C, then x is an ESS.
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The Claims
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on C, then x is an ESS.

u(x, x) = 1 - 1/(2k’),    u(0, x) = a = 1 - 1/(2k),    u(i, x) < u(x, x)  i ∉ C

⇒ x is the best strategy against x, all best responses y must be supported on C



The Claims
Claim 1: If C is a maximal clique of G of size k’ > k, and x is the uniform distribution 

on C, then x is an ESS.

u(x, x) = 1 - 1/(2k’),    u(0, x) = a = 1 - 1/(2k),    u(i, x) < u(x, x)  i ∉ C

⇒ x is the best strategy against x, all best responses y must be supported on C

⇒ u(x, y) > u(y, y)

⇒ x is an ESS



The Claims
Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.



The Claims
Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.

u(0, 0) = a = u(i, 0) 
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The Claims
Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.

We want: u(y, y) < u(0, y)
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The Claims
Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.

We want: u(y, y) < u(0, y)

y* = y with 0’th coordinate zeroed and renormalized, i.e. for i ≠ 0  y*
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⇒ u(y, y) ≤ 1 - 1/(2(k-1)) < a

⇒ pure strategy 0 is an ESS
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Summary
- How to get payoff matrix from graph G and integer k

- Matrix has ESS iff G has not max clique size k

- The Problem of having max clique size k is NP-hard and co-NP-hard



The Claims
- Claim 1: If C is a maximal clique of G of size k’ > k, and x is the uniform 

distribution on C, then x is an ESS.

- Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.



Summary
- How to get payoff matrix from graph G and integer k

- Matrix has ESS iff G has not max clique size k

- The Problem of having max clique size k is NP-hard and co-NP-hard

⇒ finding an ESS is also NP-hard and co-NP-hard



Questions?



Thanks for your Attention!


