A Note on the Computational Hardness of Evolutionarily Stable Strategies - ० -

Overview

- The Tools
- Game Theory - what the smart thing to do?
- Complexity - is chess harder then sudoku?
- Reductions
- The Method
- From Graph to Strategy
- Claims and Proofs

Game Theory

- mathematics of strategic interaction

Payoff Matrix - The Prisoner's Dilemma

Prisoner 1

		Cooperate	Stay Silent
	Cooperate	$-3 /-3$	$-4 / 0$
	Stay Silent	$0 /-4$	$-1 /-1$

Nash Equilibrium

Prisoner 1

	Cooperate	Stay Silent
Cooperate	-3/-3	-4/0
Stay Silent	0/-4	-1/-1

Nash Equilibrium

Prisoner 1

		Cooperate	Stay Silent
	Cooperate	$-3 /-3$	$-4 / 0$
	Stay Silent	$0 /-4$	$-1 /-1$

Symmetric Nash Equilibrium: "Best response to itself"

Nash Equilibrium

Prisoner 1

		Cooperate	Stay Silent
	Cooperate	$-3 /-3$	$-4 / 0$
	Stay Silent	$0 /-4$	$-1 /-1$

Symmetric Nash Equilibrium: "Best response to itself"

Rock-Paper-Scissors

	Rock	Paper	Scissors
Rock	$0 / 0$	$1 /-1$	$-1 / 1$
Paper	$-1 / 1$	$0 / 0$	$1 /-1$
Scissors	$1 /-1$	$-1 / 1$	$0 / 0$

Rock-Paper-Scissors

	Rock	Paper	Scissors
Rock	$0 / 0$	$1 /-1$	$-1 / 1$
Paper	$-1 / 1$	$0 / 0$	$1 /-1$
Scissors	$1 /-1$	$-1 / 1$	$0 / 0$

Solution? Mixed Strategies!

Mixed Strategy

Pick each option with a certain probability

- Rock 50\%, Scissors 25\%, Paper 25\%
- Rock 33\%, Scissors 33\%, Paper 33\%

Mixed Strategy

Pick each option with a certain probability

- Rock 50\%, Scissors 25\%, Paper 25\%
- Rock 33\%, Scissors 33\%, Paper 33\%

Mixed Strategy

Pick each option with a certain probability

- Rock 50\%, Scissors 25\%, Paper 25\%
- Rock 33\%, Scissors 33\%, Paper 33\%

Is there now a Nash Equilibrium?

- Yes! Picking everything $33 \% \rightarrow$ best response to itself!

Evolutionary Stable Strategy

Evolutionary Stable Strategy

Evolutionary Stable Strategy

If yellow is worse against green...

Evolutionary Stable Strategy

If yellow is worse against green...

Evolutionary Stable Strategy

If yellow is as good against green...

Evolutionary Stable Strategy

If yellow is as good against green...

Evolutionary Stable Strategy

If yellow is as good against green... and is worse against itself!

Evolutionary Stable Strategy

If yellow is as good against green... and is worse against itself!

Evolutionary Stable Strategy

If yellow is as good against green... and is as good against itself!

Evolutionary Stable Strategy

If yellow is as good against green... and is as good against itself!

Evolutionary Stable Strategy

If yellow is as good against green... and is as good against itself!

Evolutionary Stable Strategy

- Nash Equilibrium: Strategy x is the best response to itself.
- + extra condition: For every Strategy y, such that y is an equally good response to x, it holds that y is a strictly worse response to itself, than x is to y.

Rock-Paper-Scissors, evolutionary stable?

	Rock	Paper	Scissors
Rock	$0 / 0$	$1 /-1$	$-1 / 1$
Paper	$-1 / 1$	$0 / 0$	$1 /-1$
Scissors	$1 /-1$	$-1 / 1$	$0 / 0$

Complexity

- Measure for how "hard" a problem is to solve
- How many steps does it take to complete a task, in relation to the input size?
- As the input size grows, how much longer does it take to solve a problem?

Complexity Classes

- Polynomial: Sorting a List
- Exponential time: Chess

NP-Problems and co-NP-Problems

- NP: hard to find a solution, easy to check if the solution is correct
- Sudoku, Super Mario Bros, etc
- co-NP: similar but opposite of NP-problems
- In NP-Problems, yes-instances are easy to check, in co-NP-Problems no-instances are easy to check

Reduction

- "quick" transformation of a problem A into another problem B, so that we can use a solution to problem B, to solve Problem A

Reduction

Solution

Reduction, Example

Q: Is this graph three-colorable?

Reduction, Example

Q: Is this graph three-colorable?

Idk, but I would know how to solve for four-colorability....

Reduction, Example

Q: Is this graph three-colorable?

What does this tell us about complexity?

- If there is a reduction from problem A to problem B, A is at most as hard as B.
- $\rightarrow \mathrm{B}$ is as least as hard as A

NP-Hardness and co-NP-Hardness

- A problem H is NP-hard when for every problem L in NP, there is a polynomial-time reduction from L to H.
- Informally: "Hardest Problems in NP"
- A problem H is co-NP-hard when for every problem L in co-NP, there is a polynomial-time reduction from L to H

The Paper, finally, what is it about?

- Given Graph G, Integer k
\rightarrow Payoff Matrix u
- u has ESS iff G has max clique size not exactly k
- finding max clique size is NP-hard and co-NP-hard
\rightarrow finding an ESS is NP-hard and co-NP-hard

Cliques

Cliques

Notation

- u: payoff matrix
- u(i, j): payoff for option i when facing option j
- $\quad x, y$: Strategies, probability distributions on options
- $u(x, y)=\sum_{i} \sum_{j} x_{i}^{*} y_{j}^{*} u(i, j)$: expected payoff of strategy x when facing y
- Symmetric Nash equilibrium: for every $y, u(x, x) \geq u(y, x)$
- 2. Condition: for every $y \neq x$ such that $u(y, x)=u(x, x)$, we have that $u(y, y)<u(x, y)$

The Reduction

Given: Graph $G \&$ Integer $k, 1<k<$ (number of vertices)

The Reduction

Given: Graph $G \&$ Integer $k, 1<k<$ (number of vertices), e.g. $k=2$

The Reduction

Given: Graph $G \&$ Integer $k, 1<k<$ (number of vertices), e.g. $k=2$

The Reduction

Given: Graph $G \&$ Integer $k, 1<k<$ (number of vertices), e.g. $k=2$

Rule 1

for $i, j>0, i \neq j, u(i, j)=1$, if there is an edge between vertices $i \& j$, else 0

The Reduction

Given: Graph $G \&$ Integer $k, 1<k<$ (number of vertices), e.g. $k=2$

		1	0	1	0	0	0
	1		1	0	1	0	0
	0	1		0	0	1	0
	1	0	0		0	0	1
	0	1	0	0		1	1
	0	0	1	0	1		1
	0	0	0	1	1	1	

Rule 2

for $i>0, u(i, i)=0.5$

The Reduction

Given: Graph $G \&$ Integer $k, 1<k<$ (number of vertices), e.g. $k=2$

	.5	1	0	1	0	0	0
	1	.5	1	0	1	0	0
	0	1	.5	0	0	1	0
	1	0	0	.5	0	0	1
	0	1	0	0	.5	1	1
	0	0	1	0	1	.5	1
	0	0	0	1	1	1	.5

Rule 3

$$
u(i, 0)=u(0, i)=a=1-1 /(2 k)
$$

The Reduction

Given: Graph $G \&$ Integer $k, 1<k<$ (number of vertices), e.g. $k=2, a=1-1 /(2 k)=0.75$

a	a	a	a	a	a	a	a
a	.5	1	0	1	0	0	0
a	1	.5	1	0	1	0	0
a	0	1	.5	0	0	1	0
a	1	0	0	.5	0	0	1
a	0	1	0	0	.5	1	1
a	0	0	1	0	1	.5	1
a	0	0	0	1	1	1	.5

What are we trying to show?

What are we trying to show?

a	a	a	a	a	a	a	a
a	.5	1	0	1	0	0	0
a	1	.5	1	0	1	0	0
a	0	1	.5	0	0	1	0
a	1	0	0	.5	0	0	1
a	0	1	0	0	.5	1	1
a	0	0	1	0	1	.5	1
a	0	0	0	1	1	1	.5

What are we trying to show?

Has an evolutionary stable strategy...

a	a	a	a	a	a	a	a
a	.5	1	0	1	0	0	0
a	1	.5	1	0	1	0	0
a	0	1	.5	0	0	1	0
a	1	0	0	.5	0	0	1
a	0	1	0	0	.5	1	1
a	0	0	1	0	1	.5	1
a	0	0	0	1	1	1	.5

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

a	a	a	a	a
a	.5	1	1	0
a	1	.5	1	1
a	1	1	.5	0
a	0	1	0	.5

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

	$\begin{array}{lllll}0 & 0.3 & 0.3 & 0.3 & 0\end{array}$				
\bigcirc	a	a	a	a	a
\cdots	a	. 5	1	1	0
\cdots	a	1	. 5	1	1
\cdots	a	1	1	. 5	0
\bigcirc	a	0	1	0	. 5

If the support of x is a clique of size k ":

$$
u(x, x)=1-\sum_{i} x_{i}^{2} / 2
$$

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

	$\begin{array}{lllll}0 & 0.3 & 0.3 & 0.3 & 0\end{array}$				
0	a	a	a	a	a
\cdots	a	. 5	1	1	0
\cdots	a	1	. 5	1	1
\cdots	a	1	1	. 5	0
\bigcirc	a	0	1	0	. 5

If the support of x is a clique of size k ":

$$
u(x, x)=1-\sum_{i} x_{i}^{2} / 2 \leq 1-1 /\left(2 k^{\prime \prime}\right)
$$

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

	$\begin{array}{lllll}0 & 0.2 & 0.3 & 0.4 & 0.1\end{array}$				
\bigcirc	a	a	a	a	a
N	a	. 5	1	1	0
\cdots	a	1	. 5	1	1
ザo	a	1	1	. 5	0
5	a	0	1	0	. 5

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

	$\begin{array}{lllll}0 & 0.2 & 0.3 & 0.4 & 0.1\end{array}$				
\bigcirc	a	a	a	a	a
N	a	. 5	1	1	0
\cdots	a	1	. 5	1	1
ザo	a	1	1	. 5	0
5	a	0	1	0	. 5

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

$$
x=(0,0.2,0.3,0.4,0.1), \quad x^{\prime}=(0,0.3,0.3,0.4,0)
$$

Lemma

Lemma: For every x, with $x_{0}=0, u(x, x) \leq 1-1 /\left(2 k^{\prime}\right)$, where k^{\prime} is the size of the maximum clique in G. Equality is achieved iff x is uniform over a k-clique.

$$
\begin{aligned}
& x=(0,0.2,0.3,0.4,0.1), \quad x^{\prime}=(0,0.3,0.3,0.4,0) \\
& u\left(x^{\prime}, x^{\prime}\right)=u(x, x)+x_{4}(p-q)+x_{4} x_{1}
\end{aligned}
$$

The Claims

Claim l: If C is a maximal clique of G of size $k^{\prime}>k$, and x is the uniform distribution on C, then x is an ESS.

The Claims

Claim l: If C is a maximal clique of G of size $k^{\prime}>k$, and x is the uniform distribution on C, then x is an ESS.

$$
u(x, x)=1-1 /(2 k)
$$

The Claims

Claim 1: If C is a maximal clique of G of size $k^{\prime}>k$, and x is the uniform distribution on C, then x is an ESS.

$$
u(x, x)=1-1 /(2 k), \quad u(0, x)=a=1-1 /(2 k)
$$

| 0 | 0.3 | | 0.3 | 0.3 | 0 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | - | a | a | a | a | a |
| | 0 | a | .5 | 1 | 1 | 0 |
| | 0 | a | 1 | .5 | 1 | 1 |
| | a | 1 | 1 | .5 | 0 | |
| | a | 0 | 1 | 0 | .5 | |

The Claims

Claim 1: If C is a maximal clique of G of size $k^{\prime}>k$, and x is the uniform distribution on C, then x is an ESS.

$$
u(x, x)=1-1 /(2 k), \quad u(0, x)=a=1-1 /(2 k), \quad u(i, x)<u(x, x) \quad i \notin C
$$

	0	0.3	0.3	0.3	0
	a a a a a a a .5 1 1 0 a 1 .5 1 1 a 1 1 .5 0 - a 0 1	0	.5		

The Claims

Claim 1: If C is a maximal clique of G of size $k^{\prime}>k$, and x is the uniform distribution on C, then x is an ESS.
$u(x, x)=1-1 /(2 k), \quad u(0, x)=a=1-1 /(2 k), \quad u(i, x)<u(x, x) \quad i \notin C$
$\Rightarrow x$ is the best strategy against x, all best responses y must be supported on C

The Claims

Claim 1: If C is a maximal clique of G of size $k^{\prime}>k$, and x is the uniform distribution on C, then x is an ESS.
$u(x, x)=1-1 /(2 k), \quad u(0, x)=a=1-1 /(2 k), \quad u(i, x)<u(x, x) \quad i \notin C$
$\Rightarrow x$ is the best strategy against x, all best responses y must be supported on C
$\Rightarrow u(x, y)>u(y, y)$
$\Rightarrow x$ is an ESS

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.
$u(0,0)=a=u(i, 0)$

	1	0	0	0	0
	a	a	a	a	a
	a	.5	1	1	0
	a	1	.5	1	1
	a	1	1	.5	0
-	a	0	1	0	.5

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.
We want: $u(y, y)<u(0, y)$

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.
We want: $u(y, y)<u(0, y)$
$y^{*}=y$ with 0^{\prime} th coordinate zeroed and renormalized, i.e. for $i \neq 0 \quad y^{*}{ }_{i}=y_{i} /\left(1-y_{0}\right)$

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.
We want: $u(y, y)<u(0, y)$
$y^{*}=y$ with 0^{\prime} th coordinate zeroed and renormalized, i.e. for $i \neq 0 \quad y^{*}{ }_{i}=y_{i} /\left(1-y_{0}\right)$
$u(y, y)=\left(2 y_{0}-y_{0}^{2}\right) a+\left(1-2 y_{0}+y_{0}^{2}\right) u\left(y^{*}, y^{*}\right)$

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.
We want: $u(y, y)<u(0, y)$
$y^{*}=y$ with 0^{\prime} th coordinate zeroed and renormalized, i.e. for $i \neq 0 \quad y^{*}{ }_{i}=y_{i} /\left(1-y_{0}\right)$
$u(y, y)=\left(2 y_{0}-y_{0}^{2}\right) a+\left(1-2 y_{0}+y_{0}^{2}\right) u\left(y^{*}, y^{*}\right), \quad u(0, y)=a$

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.
We want: $u(y, y)<u(0, y)$
$y^{*}=y$ with 0^{\prime} th coordinate zeroed and renormalized, i.e. for $i \neq 0 \quad y^{*}{ }_{i}=y_{i} /\left(1-y_{0}\right)$
$u(y, y)=\left(2 y_{0}-y_{0}^{2}\right) a+\left(1-2 y_{0}+y_{0}^{2}\right) u\left(y^{*}, y^{*}\right), \quad u(0, y)=a$
$\Rightarrow u(y, y) \leq 1-1 /(2(k-1))<a$

The Claims

Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.
We want: $u(y, y)<u(0, y)$
$y^{*}=y$ with 0^{\prime} th coordinate zeroed and renormalized, i.e. for $i \neq 0 \quad y_{i}^{*}=y_{i} /\left(1-y_{0}\right)$

$$
\begin{aligned}
& u(y, y)=\left(2 y_{0}-y_{0}{ }^{2}\right) a+\left(1-2 y_{0}+y_{0}{ }^{2}\right) u\left(y^{*}, y^{*}\right), \quad u(0, y)=a \\
& \Rightarrow u(y, y) \leq 1-1 /(2(k-1))<a
\end{aligned}
$$

\Rightarrow pure strategy 0 is an ESS

Summary

- How to get payoff matrix from graph and integer k

Summary

- How to get payoff matrix from graph G and integer k
- Matrix has ESS iff G has not max clique size k

Summary

- How to get payoff matrix from graph G and integer k
- Matrix has ESS iff G has not max clique size k
- The Problem of having max clique size k is NP-hard and co-NP-hard

The Claims

- Claim l: If C is a maximal clique of G of size $k^{\prime}>k$, and x is the uniform distribution on C, then x is an ESS.
- Claim 2: If G contains no clique of size k then the pure strategy 0 is an ESS.

Summary

- How to get payoff matrix from graph G and integer k
- Matrix has ESS iff G has not max clique size k
- The Problem of having max clique size k is NP-hard and co-NP-hard
\Rightarrow finding an ESS is also NP-hard and co-NP-hard

Questions?

Thanks for your Attention!

